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Abstract

Most I/O- and data-intensive scientific applications access multiple layers in the parallel I/O software stack during
execution. Typical I/O requests from these applications may include accesses to high-level I/O libraries such as Par-
allel netCDF and HDF5, the MPI I/O library, and parallel file systems. To design and implement parallel applications
that exercise such parallel I/O software stack, one must understand the flow of interactions between 1/O calls across
the entire I/O stack. This would in turn help one describe I/O behavior and thus exploit the potential performance in
the different layers of the storage hierarchy. In this paper, we propose a Pin-based dynamic instrumentation framework
to understand the complex interactions of I/O from the applications through multiple I/O libraries to the underlying
parallel file systems without any modification of the code. We also present the overheads incurred by the proposed
dynamic instrumentation tool. When our tested application is executed using a process count of 32, 64, 128, and 256,
the overheads we observed are 38.7%, 66%, 68.9%, and 78.4%, respectively.
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1. Introduction

Frequently, users of high-performance computing (HPC) systems face an interesting situation: it is not the CPU,
memory, or network that limits the performance of their applications; it is the storage system. That is, I/O behavior is
the primary factor that determines the overall application performance. Therefore, understanding how the parallel I/O
system operates and the issues involved is critically important when tuning an application to meet the requirements
for a particular system or deciding an I/O solution to match expected workloads.

Unfortunately, understanding I/O behavior is not trivial since it is a result of complex interactions between the
hardware and a number of software layers, collectively referred to as the I/O software stack. Figure 1 illustrates a
typical I/O stack for an HPC system. At the lowest level is the storage hardware. This layer consists of the disks,
controllers, and interconnection network across multiple physical devices. At this level, data is usually accessed at
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Figure 1: Parallel I/O software stack

the granularity of blocks, either physical disk blocks or logical blocks across multiple physical devices such as in a
RAID array. Above the storage hardware are the parallel file systems, such as PVFS [1], GPFS [2], Lustre [3], and
PanFS [4]. The roles of parallel file system are to manage the data on the storage hardware, to present this data as a
directory hierarchy, and to coordinate accesses to files and directories in a consistent manner. The MPI-1O [5] library
sits on top of the parallel file systems. The MPI-1O interface is the standard parallel I/O interface and exists on most
high-performance parallel computing platforms today. It provides the API and optimizations such as data caching,
and process coordination [6, 7, 8, 9, 10, 11]. While the MPI-10 interface is effective and advantageous because of
its performance and portability, most scientific applications work with structured data. For this reason many scientific
applications take advantage of a high-level API written on top of MPI-IO (e.g., Parallel netCDF [12] or HDF5 [13]).
These high-level interfaces allow application programmers to better describe how their applications access shared
storage resources. Further, they provide data abstractions that match the way the scientific applications view data.

One approach to understanding I/O behavior is to let the application programmers or scientists manually instru-
ment the I/O software stack. Unfortunately, this approach is extremely difficult and error-prone. In fact, instrumenting
even a single I/O call may necessitate modifications to numerous files to pass the trace information from the applica-
tion to multiple I/O software layer below. Worse, a high-level I/O call from the application program can be fragmented
into multiple calls (subcalls) in the MPI-10 library. Since most parallel scientific applications today are expected to
run on large-scale systems with hundreds of thousands of processors in order to achieve better performance, even
collecting and analyzing trace log data from them are laborious and burdensome.

Motivated by these observations, we have developed a dynamic performance analysis and visualization tool for
parallel I/O. Instead of manually instrumenting applications and other components of the parallel I/O stack compo-
nents, we leverage a lightweight binary instrumentation using Pin [14] to implement our current prototype of the tool.
In other words, our tool performs the instrumentation in the binary code of the MPI-10 library and the underlying par-
allel file system, PVES, at runtime. Therefore, our tool provides the language-independent instrumentation working
with scientific applications written in C/C++ or Fortran. Further, our tool requires neither source code modification
nor recompilation of the applications and parallel I/O stack components. Lastly, a unique aspect of our implementa-
tion is that it provides a hierarchical view for the parallel I/O. In our implementation, each MPI I/O call has a unique
identification number in the MPI-IO layer and is passed to the underlying file systems with trace information. This
mechanism helps associate the MPI I/O call from the applications with its subcalls in the PVES layer in a systematic
way. In addition, our tool provides detailed I/O performance metrics—including I/O latency at each I/O software
stack layer, disk throughput, and the number of I/O calls from the PVFS client to the PVFS server—for each MPI I/O
call. To our knowledge, no currently existing tools provide this functionality.

While our tool can be used for dynamic (runtime) I/O optimizations, our main goal in this paper is to present
its implementation details and quantify its overhead. The rest of this paper is organized as follows. Related work is
discussed in Section 2. Section 3 presents the technical details of our code instrumentation and latency computation.
An experimental evaluation of the tool is presented in Section 4, followed by our concluding remarks in Section 5.
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2. Related Work

Over the past decade many code instrumentation tools have been developed and tested that target different ma-
chines and applications. ATOM [15] inserts probe code into the program at compile time. Dynamic code instrumen-
tation, on the other hand, intercepts the execution of an executable at runtime to insert user-defined codes at different
points of interest. HP’s Dynamo [16] monitors an executable’s behavior through interpretation and dynamically se-
lects hot instruction traces from the running program. DynamoRIO [17] is a binary package with an interface for both
dynamic instrumentation and optimization. PIN [14] is designed to provide a functionality simulator to the ATOM
toolkit; but unlike ATOM which instruments an executable statically by rewriting it, PIN inserts the instrumenta-
tion code dynamically while the executable is executing. In comparison, Daikon [18] uses instrumentation to extract
program invariants.

Several techniques have been proposed in the literature to reduce instrumentation overheads. Dyninst and Para-
dyn use fast breakpoints to reduce the overheads incurred during instrumentation. Both are designed for dynamic
instrumentation [19]. In comparison, FIT [20] is a static system that aims at retargetability rather than instrumentation
optimization. INS-OP [21] is also a dynamic instrumentation tool that applies transformations to reduce the overheads
in the instrumentation code. In [22], Vijayakumar et al. propose an I/O tracing approach that combines aggressive
trace compression; however, their strategy does not provide flexibility in terms of target metric specification.

Tools such as CHARISMA [23], Pablo [24], and Tuning and Analysis Utilities (TAU) [25] collect and analyze file
system traces [26]. Paraver [27] is designed to analyze MPI, OpenMP, Java, hardware counters profile, and operating
system activity. Open | SpeedShop [28] is targeted to support performance analysis of applications. Kojak [29] aims
at the development of a generic automatic performance analysis environment for parallel programs. Darshan [30]
captures I/O behavior such as file access patterns in applications, and Vampir [31] provides an analysis framework for
MPI applications. Stack Trace Analysis Tool (STAT) [32] is designed to help debug large-scale parallel programs. It
gathers and merges multiple stack traces across space, one from each of a parallel application’s processes, and across
time through periodic samples from each process. HPCToolkit [33] also uses sampling for measurement and analysis
of program performance.

For the MPI-based parallel applications, several tools have been developed, such as MPI Parallel Environment
(MPE) [34] and mpiP [35]. The latter is a lightweight profiling tool for identifying communication operations that do
not scale well in the MPI-based applications. It reduces the amount of profile data and overheads by collecting only
statistical information on MPI functions. Typically, the trace data generated by these profiling tools are visualized
using tools such as Jumpshot [36], Nupshot [37], Upshot [38], and PerfExplorer [39]. PIOViz [40] supports the
combined tracing of MPI client processes and PVFS server processes by source instrumentation; the traces of PIOViz
are shown by Jumpshot. Static code instrumentation is also supported in [41] to trace parallel I/O from the MPI
library to PVFS servers.

Our work differs from these efforts primarily because we provide a dynamic instrumentation framework to entirely
trace parallel I/O from the MPI library to the underlying parallel file system. Unlike static code instrumentation,
our implementation inserts instrumentation probe code at runtime and generates trace information to analyze the
performance of 1/O. Since our tool performs the dynamic instrumentation in the binary code of the MPI library and
PVES, it does not need any source code modification and recompilation of the application, the high-level scientific
libraries such as PnetCDF and HDF5, the MPI library, and PVES. Consequently, our approach provides portability,
manageability, and flexibility to understand and analyze parallel I/O in HPC systems. Moreover, we support various
analytical functionalities and metrics such as latency, throughput, and call information to investigate detailed I/O
behavior.

3. Technical Details

We provide here details about code instrumentation, latency, and throughput.

3.1. Our Dynamic Instrumentation

The main goal behind this is to provide a dynamic instrumentation framework for scientific applications with
minimal impact on the performance. Our current implementation uses Pin [14], a lightweight binary instrumentation
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Figure 2: Overview of our dynamic instrumentation framework. The Pin process on the client side creates trace log
files at the boundary of the MPI library and PVES client. The Pin on the server side, on the other hand, produces trace
log files for the PVFS server and disk.

tool to instrument binary code of the MPI library and PVFS. As a result, our tool does not require source code
modification and recompilation of parallel I/O software stack components.

Figure 2 illustrates the overview of our Pin-based framework. This figure is intended to explain the flow of MPI
I/O call and how the framework carries out the dynamic instrumentation when a MPI_File_write_all() function is
issued. In the figure, two Pin profiling processes on the client side and the server side generate trace log files at the
border of each layer—the MPI library, PVES client, PVFS server, and disk. The log file contains trace information of
each layer such as rank, mpi_call_id, pvfs_call_id, pvfs_server_id, I/O type, and timestamp of each layer’s boundary.

Figure 3 shows how the trace information is passed to the PVES server from the application. When the MPI_File_write_all()
function is called, the Pin process on the client side generates trace information such as rank, mpi-call_id, and
pvfs_call_id for the function. In the figure, MPI_File_write_all() calls a PVFS_sys_write() function. The PVFS _sys_write()
function is replaced with PVFS_sys_io() by definition in the MPI library. The last argument in PVFS_sys_io() is
PVFS_HINT_NULL (a NULL value of a PVFS_ hints structure). The Pin process packs the trace information in-
cluding rank, mpi_call_id, and pvfs_call_id for the MPI I/O operation into a new PVFES _hints structure and replaces
PVFS_HINT_NULL with PVFS_hints. At the starting point of the client, the Pin process produces a log file using
the information. The PVFS_hints structure passed from the MPI layer is packed into a state machine control block
(smcb) in the PVFES client and is passed to the PVFS server. Note that a high-level MPI I/O call can be fragmented
into multiple calls when the requested size of the I/O call to be written or read is bigger than that of the buffer in the
MPI library, which is 16 MB by default. In this situation, pvfs_call_id can be used to differentiate the split calls for
one mpi_call_id from others.

At the starting point of the server operation, io_start_flow(), the Pin process receives the address that points to
the flow_descriptor structure. From the flow_descriptor, it locates the PVFS_hints list. After that, it searches the
PVFES _hints structure generated by the Pin process in the client from the hint list and extracts the trace information
passed from it. Using this information, it then creates a server log file. In the io_start_io() function, the PVFS _hints
structure is packed into a flow_descriptor structure that contains all information about the request I/O.

At the point of disk operation, trove_write_callback_fn(), the Pin process acquires the address that points to
the flow_descriptor from the first argument (void *user_ptr) in the function. It then finds the PVFS_hints from the
flow_descriptor and produce a log file for disk operation using the information from the hint. Note that since the
flow_descriptor moves in the entire PVFS server, the trace information can be easily accessible at any point in the
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Figure 3: Detailed description demonstrating how the Pin process passes the trace information. The Pin process
creates new PVFES _hints with rank, mpi_call_id, and pvfs_call_id. It then replaces PVFS_HINT_NULL in PVES _sys_io
with PVFS _hints containing the trace information.

server without any complexity.

3.2. Computation Methodology

To help users understand and analyze I/O behavior for the scientific applications, our tool provides latency and
throughput statistics. Figure 4 illustrates the computation of latency and throughput. The value of I/O latency com-
puted at each layer is the maximum of the I/O latencies from the layers below it:

Latency; = Max(Latency;_1A, Latency;_1 B, Latency;_,C). (D)

However, the computation of I/O throughput in Figure 4b is additive; in other words, the I/O throughput computed at
any layer is the sum of the I/O throughput from the layers below it:

Throughput; = Z(Thpt,»_lA, Thpti_1 B, Thpt;_;C). )

Figure 5 demonstrates how the latency is computed at each layer in more detail. At each layer our tool generates a
unique ID such as process_id, mpi_call_id, pvfs_call_id, and server_id when an I/O call is passed. This unique number
(ID) is cumulatively carried down to the sublayers. All information for the I/O call passed through the entire I/O stack
is stored in the last layer. By matching and identifying these IDs, we can easily relate the high-level MPI 1/O call to
its fragmented subcalls below.

When a collective I/O call! is issued, the size of the requested I/O operation might be bigger than that of the buffer
size in the MPI library, which is 16 MB by default. In this case the I/O call can be fragmented into multiple subcalls.

! Although each process may need to access several noncontiguous portions of a file, the requests of different processes are interleaved and may
together span large contiguous portions of the file to improve I/O performance.
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Figure 4: Computation of latency and throughput. I/O latency computed at each layer is equal to the maximum value
of the I/O latencies obtained from the layers below it. In contrast, I/O throughput is the sum of I/O throughput coming
from the layers below.

I—MPI
MPI --4  (0) = e
PVES _"“Lf:lient
Client
LServer

s @ Oty

0100 0010y 0110 Lpisk

Disk =TT T T =" -1 "I
vyvyy

Figure 5: Computation of latency. mpi_call_id O is fragmented into two pvfs_call_id’s, 0 and /. When each split
I/O call, 00 and 01 for the mpi_call_id O reach servers 0 and 1, the cumulative trace information is 000 and 001 for
cumulative ID 00 (solid blue arrow), and 010 and 011 for ID 01 (dotted red arrow).

For example, in the figure mpi_call_id 0 is fragmented into two pvfs_call_id’s 0 and /. In the PVFS client layer, each
split I/O call has its own ID, 00 and 01 for the mpi_call.id 0, respectively. When these calls reach servers 0 and 1,
the cumulative trace information is 000 and 001 for cumulative ID 00 (solid blue arrow)and 010 and 011 for ID 01
(dotted red arrow). This relationship is maintained until the end of the I/O stack is reached. Therefore, for mpi_call_id
0, the latency computed at the PVFS client layer is

Latencyejjons = Z(Loo, Loy), ®)

and the latency at the PVFS server layer is

Latencyerver = Z(M ax(Looo, Loo1), Max(Loio, Lo11))- 4)

4. Evaluation

Our framework for the scientific applications is evaluated on the Breadboard [42] cluster at Argonne National
Laboratory (ANL). Each node of this cluster consists 8 quad-core Intel Xeon Processors and 16 GB main memory.
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Figure 6: Execution time of S3D I/O depending on the number of processes. Comparing with the uninstrumented I/O
software stack, the overhead caused by dynamic instrumentation with 32, 64, 128, and 256 processes is 38.7%, 66%,
68.9%, and 78.4%, respectively.

Therefore, each physical node can support 32 MPI processes. We evaluated our implementation running on 1 metadata
server, 8 I/O servers, and 256 processes. In our evaluation, we use pvfs-2.8.2, mpich2-1.4, and pnetcdf-1.2.0 as our
parallel I/O software stack.

To demonstrate the effectiveness of the framework, we ran an I/O-intensive benchmark, S3D-IO [43]. S3D I/O
is the I/O kernel of S3D application, a parallel turbulent combustion application using a direct numerical simulation
solver developed at Sandia National Laboratories (SNL). S3D solves fully compressible Navier-Stokes, total energy,
species, and mass continuity equations coupled with detailed chemistry. A checkpoint is performed at regular inter-
vals; its data consists primarily of the solved variables in 8-byte, three-dimensional arrays. This checkpoint data can
be used to obtain several more derived physical quantities of interest. Therefore, most of the checkpoint data is main-
tained for later use. At each checkpoint, four global arrays—representing the variables of mass, velocity, pressure,
and temperature—are written to files. All four arrays share the same size for the lowest three spatial dimensions X,
Y, and Z and are partitioned among the MPI processes along with X-Y-Z dimensions. S3D I/O supports MPI-IO,
PnetCDF, and HDFS interfaces.

In our evaluation, we maintain the block size of the partitioned X-Y-Z dimension as 200x200x200 in each process.
With the PnetCDF interface, it produces three checkpoint files, 976.6MB each. Figure 6 compares the execution time
of S3D I/O when running on un-instrumented I/O stack and dynamically instrumented I/O stack. We observe that,
with the process counts of 32, 64, 128, and 256, the overheads incurred by our proposed dynamic instrumentation are
38.7%, 66%, and 68.9%, and 78.4%, respectively.

Plotted in Figure 7 is the latency spent in the MPI library, PVFS client, and PVFS server from the perspective of
the rank 0 with 256 processes. It can be observed that a large fraction of the time spent in the server is due to disk
operations. In S3D I/O, three checkpoint files are produced by 12 collective I/O calls, and each checkpoint file is
generated by 0~3, 4~7, and 8~11, respectively. For example, the first checkpoint file is opened by the mpi_call_id 0.
The four arrays of mass, velocity, pressure, and temperature are sequentially written by the mpi_call_id 0, 1, 2, and
3. We observe from Figure [? ] the latency difference between the MPI library and the PVFES client. In S3D I/O, all
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Figure 7: Execution time of S3D I/O for each mpi_call_id. For mpi_call_id the latency spent in the MPI library, PVFS
client, and PVES server is plotted in order. Most of the time spent in the server layer is for disk operations. The
latency difference between the MPI library and client is due to optimization and synchronization.

the joined processes heavily exchanges data for optimization such as data sieving [10] and two-phase I/O [11]. The
optimization and synchronization result in the overhead in the MPI library. We also notice that the latency in the MPI
library for mpi_call_id O, 4, and 8 is longer than that of the others. These calls first open the checkpoint file and write
the mass array, which is the largest one among the four arrays. Because of the overhead to open the checkpoint file
and the size of the mass array, these calls spend longer time in the MPI library. In this experiment, the mpi_call_id 0, 4,
and 8 are fragmented into 6 subcalls to open the checkpoint file and write the mass array, respectively. The mpi_call_id
3,7, and 11 for the temperature is split into 2 subcalls each (see Figure 8.)

Figure 8 plots the I/O throughput of S3D I/O from mpi_call.id O to 3. The x-axis is a pair of (mpi_call_id -
pvfs_call_id). In the figure mpi_call_id 0 are fragmented into 6 subcalls, (0-0) ~ (0-5). We observe that the bandwidth
of the first call (0-0) is relatively low because it takes longer time to open the checkpoint file.

S3D I/O uses the collective I/O during the operation. In the collective I/O operation, all the joined processes
heavily exchange data to optimize the requests. In addition, communication and synchronization among the processes
mainly cause the overhead in the MPI library. Based on this understanding, scientists and application programmers
can customize the existing code to reduce the overhead, specifically file-open operation. Also, performance engineers
may improve the performance in the MPI library.

5. Conclusions

Understanding I/O behavior is one of the most important factors for efficient execution of scientific applications.
The first step in understanding I/O behavior is to instrument the flow of I/O call. Unfortunately, performing manual
code instrumentation is extremely difficult and error-prone since the characteristics of I/O are a result of complex
interactions of both hardware and multiple layers of software components. Because of the scale of the current HPC
systems, collecting and analyzing trace information to understand I/O characteristics are challenging and daunting
tasks. To alleviate these difficulties, we propose a framework to instrument I/O stack dynamically. Instead of manual
instrumentation, our software framework performs the dynamic instrumentation in the binary code of the MPI library
and PVFS. The tool inserts trace information into a PVFS _hints structure and passes it into the sublayers at runtime.
This innovative method can provide a hierarchical view of the I/O call from the MPI library to the PVFS server without
source code modification or recompilation of the given applications, the high-level libraries, the MPI library, and the
parallel file system.
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Figure 8: I/O throughput of S3D I/O. The graph plots the throughput for the corresponding subcalls from O to 3. The
four arrays—mass, velocity, pressure, and temperature—are written by mpi_call_id 0, 1, 2, and 3, in order. The first
call (0-0) opens the checkpoint file. Depending on the size of the request I/O, the I/O call is fragmented into multiple
subcalls. The I/O call for the mass, 0, is fragmented into 6 subcalls, and the I/O call for the temperature, 3, is split
into 2 subcalls.

We used a scientific application benchmark, S3D I/O, to evaluate our proposed framework. Changing the number
of processes to run S3D I/O, the overhead induced by our implementation is about 63% on average. Our tool pro-
vides several metrics to understand and analyze 1/O behavior, latency of each layer, and disk throughput for the I/O.
The results from these metrics contribute to evaluating and tuning the applications and I/O software stack. Work is
underway (i) to minimize the overheads incurred by our scheme under large process counts, and (ii) to employ our
framework for runtime (dynamic) I/O optimizations.
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